The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  X  1  1  1  1  X  1  X  1  1  1  1  X  X  X  X X^2  0 X^2  X  X  2  1  1  X  X  1 X^2  X  X  1 X^2 X^2  0  2  X  X  1 X^2 X^2  2  0  X  X  X  1  1  1  1
 0 X^2+2  2 X^2  0 X^2+2  2 X^2  0 X^2+2  2 X^2  0 X^2+2  2 X^2  0 X^2+2  2 X^2  0 X^2+2 X^2+2  2 X^2 X^2  0 X^2+2  2 X^2+2 X^2 X^2  0 X^2+2  2 X^2 X^2+2  0  2 X^2 X^2+2 X^2 X^2  0  2 X^2  0  2 X^2+2 X^2 X^2+2  2  0  2 X^2 X^2+2 X^2 X^2 X^2  0  2  0  0  2  2  2 X^2+2 X^2  2 X^2+2 X^2  0  0

generates a code of length 73 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 73.

Homogenous weight enumerator: w(x)=1x^0+32x^73+18x^74+6x^75+1x^76+1x^78+2x^79+2x^80+1x^82

The gray image is a code over GF(2) with n=584, k=6 and d=292.
This code was found by Heurico 1.16 in 0.281 seconds.